What No One Tells You About Real-Time Machine Learning

Full Stack ML

During this year, I heard and read a lot about real-time machine learning. People usually provide this appealing business scenario when discussing credit card fraud detection systems. They say that they can continuously update credit card fraud detection model in real-time (See “What is Apache Spark?”,“…real-time use cases…” and “Real time machine learning”). It looks fantastic but not realistic to me. One important detail is missing in this scenario – continuous flow of transactional data is not needed for model retraining. Instead, you need continuous flow of labeled (or pre-marked as FraudNot-Fraud) transactional data.

Machine learning process Machine learning process

Creating labeled data is probably the slowest and the most expensive step in most of the machine learning systems. Machine learning algorithms learn to detect the fraud transactions from the people which is much like labeled data. Let’s see how it works for fraud detection scenario.

1. Creating model


View original post 598 more words



Fill in your details below or click an icon to log in:

WordPress.com 徽标

You are commenting using your WordPress.com account. Log Out /  更改 )

Google+ photo

You are commenting using your Google+ account. Log Out /  更改 )

Twitter picture

You are commenting using your Twitter account. Log Out /  更改 )

Facebook photo

You are commenting using your Facebook account. Log Out /  更改 )


Connecting to %s